- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dallas, Matt (2)
-
Pollock, Sara (2)
-
Rebholz, Leo G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The purpose of this paper is to develop a practical strategy to accelerate Newton’s method in the vicinity of singular points. We present an adaptive safeguarding scheme with a tunable parameter, which we call adaptive γ-safeguarding, that one can use in tandem with Anderson acceleration to improve the performance of Newton’s method when solving problems at or near singular points. The key features of adaptive γ-safeguarding are that it converges locally for singular problems, and it can detect nonsingular problems automatically, in which case the Newton-Anderson iterates are scaled towards a standard Newton step. The result is a flexible algorithm that performs well for singular and nonsingular problems, and can recover convergence from both standard Newton and Newton-Anderson with the right parameter choice. This leads to faster local convergence compared to both Newton’s method, and Newton-Anderson without safeguarding, with effectively no additional computational cost. We demonstrate three strategies one can use when implementing Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-dependent problems near singular points. For our benchmark problems, we take two parameter-dependent incompressible flow systems: flow in a channel and Rayleigh-Benard convection.more » « less
-
Dallas, Matt; Pollock, Sara (, International Journal of Numerical Analysis and Modeling)In this paper we develop convergence and acceleration theory for Anderson acceleration applied to Newton’s method for nonlinear systems in which the Jacobian is singular at a solution. For these problems, the standard Newton algorithm converges linearly in a region about the solution; and, it has been previously observed that Anderson acceleration can substantially improve convergence without additional a priori knowledge, and with little additional computation cost. We present an analysis of the Newton-Anderson algorithm in this context, and introduce a novel and theoretically supported safeguarding strategy. The convergence results are demonstrated with the Chandrasekhar H-equation and a variety of benchmark examples.more » « less
An official website of the United States government
